Linux编程点击右侧 …… ……
算法1-10使用了若干个辅助变量,迭代辗转相加,每次记录前一项,时间复杂度为О(n),但空间复杂度降到了О(1)。
问题的进一步讨论:我们能不能继续降阶,使算法时间复杂度更低呢?实质上,斐波那契数列时间复杂度还可以降到对数阶О(logn),有兴趣的读者可以查阅相关资料。想想看,我们把一个算法从指数阶降到多项式阶,再降到对数阶,这是一件多么振奋人心的事!
(5)惊人大发现
科学家经研究在植物的叶、枝、茎等排列中发现了斐波那契数!例如,在树木的枝干上选一片叶子,记其为数1,然后依序点数叶子(假定没有折损),直到到达与那片叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中,叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数植物的叶序比呈现为斐波那契数的比,例如,蓟的头部具有13条顺时针旋转和21条逆时针旋转的斐波那契螺旋,向日葵的种子的圈数与子数、菠萝的外部排列同样有着这样的特性,如图1-11所示。
图1-11 斐波那契螺旋(图片来自网络)
观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们的花瓣数目为斐波那契数:3,5,8,13,21,…。如图1-12所示。
图1-12 植物花瓣(图片来自网络)
树木在生长过程中往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔(例如一年)以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数便构成斐波那契数列,这个规律就是生物学上 的“鲁德维格定律”。
这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样的。这似乎是植物排列种子的“优化方式”,它能使所有种子具有相近的大小却又疏密得当,不至于在圆心处挤太多的种子而在圆周处却又很稀疏。叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能 地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是.5°,这个角度称为“*金角度”,因为它和整个圆周°之比是*金分割数0.的倒数,而这种生长方式就导致了斐波那契螺旋的产生。向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至。年,两位法国科学家通过对花瓣形成过程的计算机仿真实验,证实了在系统保持 能量的状态下,花朵会以斐波那契数列的规律长出花瓣。
有趣的是:这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,斐波那契数列前一项与后一项的比值越来越逼近*金分割比0.:1÷1=1,1÷2=0.5,2÷3=0.,…,3÷5=0.6,5÷8=0.,…,55÷89=0.,…,÷=0.025,…,÷=0.0339886……
越到后面,这些比值越接近*金分割比:
斐波那契数列起源于兔子数列,这个现实中的例子让我们真切地感到数学源于生活,生活中我们需要不断地通过现象发现数学问题,而不是为了学习而学习。学习的目的是满足对世界的好奇心,如果我们怀着这样一颗好奇心,或许世界会因你而不同!斐波那契通过兔子繁殖来告诉我们这种数学问题的本质,随着数列项的增加,前一项与后一项之比越来越逼近*金分割的数值0.时,我彻底被震惊到了,因为数学可以表达美,这是令我们叹为观止的地方。当数学创造了更多的奇迹时,我们会发现数学本质上是可以回归到自然的,这样的事例让我们感受到数学的美,就像*金分割、斐波那契数列,如同大自然中的一朵朵小花,散发着智慧的芳香……
推荐↓↓↓
长
按
关
注
??都在这里!
涵盖:程序员大咖、源码共读、程序员共读、数据结构与算法、黑客技术和网络安全、大数据科技、编程前端、Java、Python、Web编程开发、Android、iOS开发、Linux、数据库研发、幽默程序员等。
万水千山总是情,点个“好看”行不行程序君赞赏