神奇的斐波那契数列

“斐波那契数列(Fibonacci)”的发现者,是意大利数学家列昂纳多?斐波那契。

斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……仔细观察这个数列,从第三项开始,每一项都等于前两项之和。

斐波那契数列是怎么得到的呢?它与自然界又有什么样的关系?

斐波那契数列的来源

斐波那契数列因数学家列昂纳多?斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。

在 个月有一对刚出生的小兔子,在第二个月小兔子变成大兔子并开始怀孕,第三个月大兔子会生下一对小兔子,并且以后每个月都会生下一对小兔子。如果每对兔子都经历这样的出生、成熟、生育的过程,并且兔子永远不死,那么兔子的总数是如何变化的?

我们不妨先来看个图:

个月只有一对兔宝宝,1对兔子。

第二个月兔宝宝变成大兔子,1对兔子。

第三个月大兔子生了一对兔宝宝,一大一小2对兔子。

第四个月大兔子继续生一对兔宝宝,小兔子变成大兔子。两大一小3对兔子。

….

我们把这个数列列表:

我们发现会发现以下几个规律:

前一个月的大兔子对数就是下一个月的小兔子对数。前一个月的大兔子和小兔子对数的和就是下个月大兔子的对数。

按照这个表格,我们会发现无论是小兔子对数、大兔子对数还是总对数,除了最初几个数字不一样之外,后面都是按照1、1、2、3、5、8、13…变化的,这个数列就称为兔子数列或者斐波那契数列。

兔子数列 的特点就是前两项之和等于后一项,比如1+1=2、1+2=3、2+3=5、3+5=8、5+8=13…

神奇的数列

也许许多人觉得,斐波那契数列不过是浩如烟海的数学海洋中的一滴水。但是实际上,从这个数列被提出的那一天起,几百年来人们在许多领域都发现了它的影子。

在数学上,许多求“方法数”的问题,答案都是斐波那契数列。例如:如果我们要上一个N级台阶的楼梯,每次只能走1格或者2格,那么一共有多少种走法呢?

如果只有一级台阶,显然只有1种走法。

如果有两级台阶,显然可以走一步,也可以走两步,因此有2种走法。

如果有三级台阶,就有如图所示的3种走法。

1、2、3这三个数字都是斐波那契数。那么,如果有更多台阶怎么办呢?这就需要递推式了。

由于一步最多走连两个台阶,因此要到达第N级台阶,有两种方案:

走到第N-1级台阶上,然后走1级台阶跨到最上方;走到第N-2级台阶上,然后一步走两级台阶跨到最上方。注意,从第N-2级台阶走1级到N-1级台阶这种情况已经计算在 种情况中计算过了。

我们用a(N-1)和a(N-2)分别表示走到第N-1级和第N-2级台阶的方法数,那么走到第N级台阶的方法数就是:

aN=a(N-1)+a(N-2)

显然,这就是斐波那契数列的递推公式,因此走台阶问题的解刚好是斐波那契数列。

生活中最典型的斐波那契数列应用是在植物学中。

大树在生长的过程中会长出分枝,如果我们从下到上数分枝个数,就会发现依次是1、1、2、3、5、8、13…等等,刚好是斐波那契数列。有科学家对这种现象的解释是与兔子繁殖后代相同:每过一段时间老树枝都会萌发新芽,而新芽成长为成熟的树枝后也会每隔一段时间萌发一次新芽。

另一个神奇的例子就是向日葵等植物。

如果我们仔细观察,就会发现向日葵盘内的种子形成两组螺旋线,一组是顺时针的,另一组是逆时针的。而这两组螺旋线的条数刚好是两个相邻的斐波那契数,小向日葵是34和55,大向日葵是和。松果种子、菜花表面也有类似的规律。

另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……

其中百合花花瓣数目为3,梅花5瓣,飞燕草8瓣,万寿菊13瓣,向日葵21或34瓣,雏菊有34,55和89三个数目的花瓣。

斐波那契螺旋:具有13条顺时针旋转和21条逆时针旋转的螺旋的蓟的头部。

这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样。这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉。叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能 地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是.5度,这个角度称为“*金角度”,因为它和整个圆周度之比是*金分割数0.……,而这种生长方式就决定了斐波那契螺旋的产生。向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至条。

年,两位法国科学家通过对花瓣形成过程的计算机仿真实验,证实了在系统保持 能量的状态下,花朵会以斐波那契数列长出花瓣。

*金分割

随着斐波那契数列项数的增加,前一项与后一项之比越来越逼近*金分割的数值1:1.……

八百年来,人们在各个领域都发现了斐波那契数列。尤其是十九世纪开始,人们发现了斐波那契数列在计算机、物理、化学等领域的应用,这个古老的数列焕发了新的青春。年,斐波那契协会成立,并出版了《斐波那契季刊》用以刊登与斐波那契数列相关的研究成果。

想要改变孩子

必须学会坚持

来想想思维

从现在开始起

培养孩子良好的学习及生活习惯

扫一扫下载订阅号助手,用手机发文章赞赏

长按







































白癜风怎么快速治疗
心系山区北京中科医院温情相伴



转载请注明地址:http://www.fenghuangmua.com/fmtz/3209.html
  • 上一篇文章:
  • 下一篇文章: